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Preface
Foundations of Earth Science, eighth edition, is a college-
level text designed for an introductory course in Earth 
science. It consists of seven units that emphasize broad 
and up-to-date coverage of basic topics and principles in 
geology, oceanography, meteorology, and astronomy. The 
book is intended to be a meaningful, nontechnical survey 
for undergraduate students who may have a modest sci-
ence background. Usually these students are taking an 
Earth science class to meet a portion of their college’s or 
university’s general requirements.

In addition to being informative and up-to-date, 
Foundations of Earth Science, eighth edition, strives to 
meet the need of beginning students for a readable and 
user-friendly text and a highly usable tool for learning 
basic Earth science principles and concepts.

New and Important Features
This eighth edition is an extensive and thorough revision 
of Foundations of Earth Science that integrates improved 
textbook resources with new online features to enhance 
the learning experience:
•	 Significant updating and revision of content. 

A basic function of a college science textbook is to 
present material in a clear, understandable way that is 
accurate, engaging, and up-to-date. In the long history 
of this textbook, our number-one goal has always been 
to keep Foundations of Earth Science current, relevant, 
and highly readable for beginning students. To that 
end, every part of this text has been examined care-
fully. Many discussions, case studies, examples, and 
illustrations have been updated and revised.

•	 SmartFigures that make Foundations much more 
than a traditional textbook. Through its many edi-
tions, an important strength of Foundations of Earth 
Science has always been clear, logically organized, and 
well-illustrated explanations. Now, complementing and 
reinforcing this strength are a series of SmartFigures. 
Simply by scanning a SmartFigure with a mobile 
device and Pearson’s BouncePages Augmented 
Reality app (available for iOS and Android), students 
can follow hundreds of unique and innovative avenues 
that will increase their insight and understanding of 
important ideas and concepts. SmartFigures are truly 
art that teaches! This eighth edition of Foundations has 
more than 200 SmartFigures, of five different types:

	 1. � SmartFigure Tutorials. Each of these 2- to 4-min-
ute features, prepared and narrated by Professor 
Callan Bentley, is a mini-lesson that examines and 
explains the concepts illustrated by the figure.

	 2. � SmartFigure Mobile Field Trips. Scattered 
throughout this new edition are 24 video field trips that 
explore classic sites from Iceland to Hawaii. On each 
trip you will accompany geologist-pilot-photographer 

Michael Collier in the air and on the ground to see and 
learn about landscapes that relate to discussions in the 
chapter.

	 3. � SmartFigure Condor Videos. The 10 Condor 
videos take you to locations in the American West. 
By coupling aerial footage acquired by a drone air-
craft with ground-level views, effective narratives, 
and helpful animations, these videos will engage 
you in real-life case studies.

	 4. � SmartFigure Animations. Scanning the many 
figures with this designation brings art to life. These 
animations and accompanying narrations illustrate 
and explain many difficult-to-visualize topics and 
ideas more effectively than static art alone.

	 5. � SmartFigure Videos. Rather than provide a single 
image to illustrate an idea, these figures include 
short video clips that help illustrate such diverse 
subjects as mineral properties and the structure of 
ice sheets.

•	 Revised active learning path. Foundations of Earth 
Science is designed for learning. Every chapter begins 
with Focus on Concepts. Each numbered learning 
objective corresponds to a major section in the chapter. 
The statements identify the knowledge and skills stu-
dents should master by the end of the chapter and help 
students prioritize key concepts. Within the chapter, 
each major section concludes with Concept Checks 
that allow students to check their understanding and 
comprehension of important ideas and terms before 
moving on to the next section. Two end-of-chapter fea-
tures complete the learning path. Concepts in Review 
coordinates with the Focus on Concepts at the start of 
the chapter and with the numbered sections within the 
chapter. It is a readable and concise overview of key 
ideas, with photos, diagrams, and questions that also 
help students focus on important ideas and test their 
understanding of key concepts. Chapters conclude with 
Give It Some Thought. The questions and problems  
in this section challenge learners by involving them  
in activities that require higher-order thinking skills, 
such as application, analysis, and synthesis of chapter 
material.

•	 An unparalleled visual program. In addition to 
more than 100 new, high-quality photos and satel-
lite images, dozens of figures are new or have been 
redrawn by the gifted and highly respected geosci-
ence illustrator Dennis Tasa. Maps and diagrams are 
frequently paired with photographs for greater effec-
tiveness. Further, many new and revised figures have 
additional labels that narrate the process being illus-
trated and guide students as they examine the figures. 
Overall, the visual program of this text is clear and easy 
to understand.

•	 MasteringGeologyTM. MasteringGeology delivers 
engaging, dynamic learning opportunities—focused 
on course objectives and responsive to each student’s 
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progress—that have been proven to help students learn 
course material and understand difficult concepts. 
Assignable activities in MasteringGeology include 
SmartFigure (Tutorial, Condor, Animation, Mobile 
Field Trip, and Video) activities, GigaPan® activities, 
Encounter Earth activities using Google EarthTM, 
GeoTutor activities, Geoscience Animation activities, 
GEODe tutorials, and more. MasteringGeology also 
includes all instructor resources and a robust Study 
Area with resources for students.

The Teaching and Learning Package
 with Pearson eText

Used by more than 1 million science students, the 
Mastering platform is the most effective and widely used 
online tutorial, homework, and assessment system for the 
sciences. Now available with Foundations of Earth Sci-
ence, eighth edition, MasteringGeology™ offers tools 
for use before, during, and after class:
•	 Before class: Assign adaptive Dynamic Study Mod-

ules and reading assignments from the eText with 
Reading Quizzes to ensure that students come pre-
pared to class, having done the reading.

•	 During class: Learning Catalytics, a “bring your own 
device” student engagement, assessment, and class-
room intelligence system, allows students to use a 
smartphone, tablet, or laptop to respond to questions 
in class. With Learning Catalytics, you can assess stu-
dents in real-time, using open-ended question formats 
to determine student misconceptions, and adjust lec-
tures accordingly.

•	 After class: Assign an array of assessment resources 
such as Mobile Field Trips, Project Condor videos, 
Interactive Simulations, GeoDrone activities, Google 
Earth Encounter Activities, and much more. Students 
receive wrong-answer feedback personalized to their 
answers, which will help them get back on track.

MasteringGeology Student Study Area also provides 
students with self-study materials including all of the 
SmartFigures, geoscience animations, GEODe: Earth 
Science tutorials, In the News RSS feeds, Self Study 
Quizzes, Web Links, Glossary, and Flashcards.

For more information or access to MasteringGeology, 
please visit www.masteringgeology.com.

Instructor’s Resource Materials (Download Only)
The authors and publisher have been pleased to work 
with a number of talented people who have produced an 
excellent supplements package.

Instructor’s Resource Materials (IRM)  The IRM puts all 
your lecture resources in one easy-to-reach place:

•	 The IRM provides all of the line art, tables, and photos 
from the text in .jpg files.

•	 The IRM provides three PowerPoint files for each 
chapter. Cut down on your preparation time, no matter 
what your lecture needs, by taking advantage of these 
components of the PowerPoint files:
•	 �Exclusive art. All of the photos, art, and tables from 

the text, in order, loaded into PowerPoint slides.
•	 �Lecture outlines. This set averages 70 slides per 

chapter and includes customizable lecture outlines 
with supporting art.

•	 �Classroom Response System (CRS) questions. 
Authored for use in conjunction with classroom 
response systems, these PowerPoints allow you to 
electronically poll your class for responses to ques-
tions, pop quizzes, attendance, and more.

Instructor Manual (Download Only) 
The Instructor Manual has been designed to help 
seasoned and new professors alike, and it offers the fol-
lowing for each chapter: an introduction to the chapter, 
an outline, and learning objectives/Focus on Concepts; 
teaching strategies; teacher resources; and answers to 
Concept Checks, Concepts in Review, and Give It Some 
Thought questions from the textbook.

TestGen Computerized Test Bank (Download Only)
TestGen is a computerized test generator that lets 
instructors view and edit Test Bank questions, transfer 
questions to tests, and print tests in a variety of custom-
ized formats. The Test Bank includes approximately 
1,200 multiple-choice, matching, and essay questions. 
Questions are correlated to Bloom’s Taxonomy, each 
chapter’s learning objectives, the Earth Science Literacy 
Initiative Big Ideas, and the Pearson Science Global 
Outcomes to help instructors better map the assessments 
against both broad and specific teaching and learning 
objectives. The Test Bank is also available in Microsoft 
Word and can be imported into Blackboard. www 
.pearsonhighered.com/irc

Blackboard  Already have your own website set up? We will 
provide a Test Bank in Blackboard or formats for importa-
tion upon request. Additional course resources are avail-
able on the IRC and are available for use with permission.

Acknowledgments
Writing a college textbook requires the talents and 
cooperation of many people. It is truly a team effort, and 
the authors are fortunate to be part of an extraordinary 
team at Pearson Education. In addition to being great 
people to work with, all are committed to producing the 
best textbooks possible. Special thanks to our geosci-
ence editor, Andy Dunaway, who invested a great deal 

A01_LUTG4814_8E_SE_FM.indd   22 23/01/16   3:14 pm

http://www.masteringgeology.com
www.pearsonhighered.com/irc
www.pearsonhighered.com/irc


	 Preface	 xxiii

of time, energy, and effort in this project. We appreciate 
his enthusiasm, hard work, and quest for excellence. 
We also appreciate our conscientious project manager, 
Nicole Antonio, whose job it was to keep track of all that 
was going on—and a lot was going on. As always, our 
marketing managers, Neena Bali and Mary Salzman, 
who talk with faculty daily, provide us with helpful input. 
The eighth edition of Foundations of Earth Science was 
certainly improved by the talents of our developmental 
editor, Margot Otway. Many thanks. It was the job of  
the production team, led by Heidi Allgair at Cenveo®  
Publisher Services, to turn our manuscript into a finished 
product. The team also included copyeditor Kitty  
Wilson, compositor Annamarie Boley, proofreader 
Heather Mann, and photo researcher Kristin Piljay. We 
think these talented people did great work. All are true 
professionals, with whom we are very fortunate to  
be associated.
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134 Chapter 4 Glacial and Arid Landscapes polar ice could not spread far beyond the margins of Ant-

arctica. By contrast, North America and Eurasia provided 

great expanses of land for the spread of ice sheets.

We now know that the Ice Age began between 2 mil-

lion and 3 million years ago. This means that most of the 

major glacial episodes occurred during a division of the 

geologic time scale called the Quaternary period. Al-

though the Quaternary is commonly used as a synonym 

for the Ice Age, this period does not encompass it all. The 

Antarctic Ice Sheet, for example, formed at least 30 mil-

lion years ago.

Figure 4.24 Where was 

the ice? This map shows 

the maximum extent of 

ice sheets in the Northern 

Hemisphere during the 

Quaternary Ice Age.
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4.6  ConCept CheCks 

1. About what percentage of Earth’s land surface was 

affected by glaciers during the Quaternary period?

2. Where were ice sheets more extensive during 

the Ice Age: the Northern Hemisphere or the 

Southern Hemisphere? Why?

4.7
 

 Deserts 

 
 Describe the general distribution and causes of Earth’s dry lands and the 

role that water plays in modifying desert landscapes.

The dry regions of the world encompass about 42 million 

square kilometers (more than 16 million square miles), a 

surprising 30 percent of Earth’s land surface. No other 

climate group covers so large a land area. The word desert 

literally means “deserted,” or “unoccupied.” For many dry 

regions, this is a very appropriate description. Yet where 

water is available in deserts, plants and animals thrive. 

Nevertheless, the world’s dry regions are among the least 

familiar land areas on Earth outside of the polar realm.

Desert landscapes frequently appear stark. Their pro-

files are not softened by a carpet of soil and abundant plant 

life. Instead, barren rocky outcrops with steep, angular 

slopes are common. Some rocks are tinted orange and red; 

others in different locations are gray and brown and streaked 

with black. For many visitors, desert scenery exhibits a strik-

ing beauty; to others, the terrain seems bleak. No matter 

which feeling is elicited, it is clear that deserts are very dif-

ferent from the more humid places where most people live.

As you will see, arid regions are not dominated by 

a single geologic process. Rather, the effects of tectonic 

(mountain-building) forces, running water, and wind are 

all apparent. Because these processes combine in differ-

ent ways from place to place, the appearance of desert 

landscapes varies a great deal as well (Figure 4.25).

Distribution and Causes of Dry Lands

We all recognize that deserts are dry places, but just 

what is meant by the word dry? That is, how much rain 

defines the boundary between humid and dry regions?

Sometimes, dry is arbitrarily defined by a single 

rainfall figure, such as 25 centimeters (10 inches) per 

year of precipitation. However, the concept of dryness 

is relative; it refers to any situation in which a water 

deficiency exists. Climatologists define dry climate as a 

climate in which yearly precipitation is less than the po-

tential loss of water by evaporation.
Did You Know?

The Sahara of North 

Africa is the world’s 

largest desert. Extend-

ing from the Atlantic 

Ocean to the Red Sea, 

it covers about 9 million 

sq km (3.5 million sq mi), 

an area about the size 

of the United States. By 

comparison, the larg-

est desert in the United 

States, Nevada’s Great 

Basin Desert, has an 

area that is less than 5 

percent as large as the 

Sahara.

Figure 4.25 Nevada’s Great Basin Desert Mountains sepa-

rate this area from Pacific moisture and thus contribute to 

its aridity. When rare storms occur, the sparse vegetation 

does little to protect the surface from erosion. The appear-

ance of desert landscapes varies a great deal from place to 

place. (Photo by Dennis Tasa)
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Within these water-deficient regions, two climatic 

types are commonly recognized: desert, or arid, and 

steppe, or semiarid. The two categories have many fea-

tures in common; their differences are primarily a mat-

ter of degree. The steppe is a marginal and more humid 

variant of the desert and represents a transition zone that 

surrounds the desert and separates it from bordering 

humid climates. Maps showing the distribution of desert 

and steppe regions reveal that dry lands are concentrated 

in the subtropics and in the middle latitudes (Figure 4.26).

Deserts in places such as Africa, Arabia, and 

Australia primarily result from the prevailing global dis-

tribution of air pressure and winds (Figure 4.27). Coincid-

ing with dry regions in the lower latitudes are zones of 

high air pressure known as the subtropical highs. These 

pressure systems are characterized by subsiding air cur-

rents (see Figure 13.17). When air sinks, it is compressed 

and warmed. Such conditions are just the opposite of 

what is needed to produce clouds and precipitation. Con-

sequently, these regions are known for their clear skies, 

sunshine, and ongoing dryness.

Middle-latitude deserts and steppes exist princi-

pally because they are sheltered in the deep interiors of 

large landmasses. They are far removed from the ocean, 

which is the ultimate source of moisture for cloud forma-

tion and precipitation. In addition, the presence of high 

mountains across the paths of prevailing winds further 

acts to separate these areas from water-bearing, mari-

time air masses. In North America, the Coast Range, 

Sierra Nevada, and Cascades are the foremost mountain 
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SmartFigure 4.26 Dry cli-

mates Arid and semiarid 

climates cover about 30 

percent of Earth’s land 

surface. The dry region 

of the American West is 

commonly divided into 

four deserts, two of which 

extend into Mexico.

Tutorial

In this view from space, the Sahara Desert, the adjacent 

Arabian Desert and the Kalahari and Namib deserts are clearly 

visible as tan-colored, cloud-free zones. The band of clouds 

across central Africa and the adjacent oceans coincides with 

the equatorial low-pressure belt.

SmartFigure 4.27 Subtropical deserts Subtropical deserts 

and steppes are centered between 20 degrees and 30 

degrees north and south latitude in association with belts of 

high pressure. Dry subsiding air inhibits cloud formation and 

precipitation.

Animation
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In this view from space, the Sahara Desert, the adjacent 
Arabian Desert and the Kalahari and Namib deserts are clearly 
visible as tan-colored, cloud-free zones. The band of clouds 
across central Africa and the adjacent oceans coincides with 
the equatorial low-pressure belt.

SmartFigure 4.27 Subtropical deserts Subtropical deserts 
and steppes are centered between 20 degrees and 30 
degrees north and south latitude in association with belts of 
high pressure. Dry subsiding air inhibits cloud formation and 
precipitation.
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Augmented Reality Enhances the Reading  
Experience, Bringing the Textbook to Life

Using a cutting-edge technology 
called augmented reality, Pearson’s 
BouncePages app launches 

engaging, interactive videos and animations 
that bring textbook pages to life. Use your 
mobile device to scan a SmartFigure identified 
by the BouncePages icon, and an animation 
or video illustrating the SmartFigure’s concept 
launches immediately. No slow websites or 
hard-to-remember logins required.

BouncePages’ augmented reality technology 
transforms textbooks into convenient digital 
platforms, breathes life into your learning 
experience, and helps you grasp difficult 
academic concepts. Learning geology from  
a textbook will never be the same.

https://itunes.apple.com/us/app/pearson 
-bouncepages/id659370955?mt=8

https://play.google.com/store/apps/details?id=com 
.layar.bouncepages&hl=en 

By scanning figures associated with the BouncePages icon, students 
will be immediately connected to the digital world and will deepen their 
learning experience with the printed text.

26 Chapter 2 Rocks: Materials of the Solid Earth

silicate minerals, particularly those found in 
crystalline igneous rocks—quartz and feldspar, 
for example—remain stable at these tem-
peratures. Thus, these minerals require much 
higher temperatures in order to metamorphose 
and recrystallize.

Confining Pressure and Differential Stress 
as Metamorphic Agents Pressure, like tem-
perature, increases with depth as the thickness 
of the overlying rock increases. Buried rocks 
are subjected to confining pressure—similar 
to water pressure in that the forces are equally 
applied in all directions (Figure 2.31A). The 
deeper you go in the ocean, the greater the 
confining pressure. The same is true for buried 
rock. Confining pressure causes the spaces 
between mineral grains to close, producing a 
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Figure 2.30 Metamorphic 
grade A. Low-grade meta-
morphism illustrated by 
the transformation of the 
common sedimentary rock 
shale to the more compact 
metamorphic rock slate. B. 
High-grade metamorphic 
environments obliterate 
the existing texture and 
often change the mineral-
ogy of the parent rock. 
High-grade metamorphism 
occurs at temperatures 
that approach those at 
which rocks melt. (Photos by 

Dennis Tasa)

In a depositional 
environment, as con�ning 
pressure increases, rocks 
deform by decreasing in 

volume. 

During mountain building, rocks subjected to 
differential stress are shortened in the direction 

of maximum stress and lengthened in the 
direction of minimum stress.
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more compact rock that has greater density. Further, at 
great depths, confining pressure may cause minerals to 
recrystallize into new minerals that display more com-
pact crystalline forms.

During episodes of mountain building, large 
rock bodies become highly crumpled and metamor-
phosed (Figure 2.31B). Unlike confining pressure, which 
“squeezes” rock equally in all directions, the forces that 
generate mountains are unequal in different directions 
and are called differential stress. As shown in Figure 
2.31B, rocks subjected to differential stress are shortened 
in the direction of greatest stress, and they are elongated, 
or lengthened, in the direction perpendicular to that 
stress. The deformation caused by differential stresses 
plays a major role in developing metamorphic textures.

In surface environments where temperatures are 
relatively low, rocks are brittle and tend to fracture when 
subjected to differential stress. (Think of a heavy boot 
crushing a piece of fine crystal.) Continued deformation 
grinds and pulverizes the mineral grains into small frag-
ments. By contrast, in high-temperature, high-pressure 
environments deep in Earth’s crust, rocks are ductile 
and tend to flow rather than break. (Think of a heavy 
boot crushing a soda can.) When rocks exhibit ductile be-
havior, their mineral grains tend to flatten and elongate 
when subjected to differential stress. This accounts for 
their ability to generate intricate folds (see Figure 2.29).

SmartFigure 2.31 Confining pressure and 
differential stress

Tutorial
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differential stress

Tutorial
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Bring the Field to YOUR Teaching  
and Learning Experience

xxvi

NEW! SmartFigure: Condor Videos. Bringing 
Physical Geology to life for GenEd students, 
three geologists, using a GoPro camera 
mounted to a quadcopter, have ventured 
out into the field to film 10 key geologic 
locations. These process-oriented videos, 
accessed through BouncePages technology, 
are designed to bring the field to the class-
room or dorm room and enhance the learning 
experience in our texts.

NEW! SmartFigure: Mobile Field Trips. 
Scattered throughout this new edition 
of Foundations of Earth Science are 24 
video field trips. On each trip, you will 
accompany geologist-pilot-photographer 
Michael Collier in the air and on the 
ground to see and learn about iconic 
landscapes that relate to discussions 
in the chapter. These extraordinary 
field trips are accessed by using the 
BouncePages app to scan the figure in 
the chapter—usually one of Michael’s 
outstanding photos.
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Visualize Processes and Tough Topics

NEW! SmartFigure: Animations are brief videos, many created by text illustrator Dennis Tasa, 
that animate a process or concept depicted in the textbook’s figures. This technology allows 
students to view moving figures rather than static art to depict how a geologic process actually 
changes through time. The videos can be accessed using Pearson’s BouncePages app for use 
on mobile devices, and will also be available via MasteringGeology.

Callan Bentley, SmartFigure Tutorial author, is a 
Chancellor’s Commonwealth Professor of Geology 
at Northern Virginia Community College (NOVA) in 
Annandale, Virginia. Trained as a structural geologist, 
Callan teaches introductory level geology at NOVA, 
including field-based and hybrid courses. Callan 
writes a popular geology blog called Mountain Beltway, 
contributes cartoons, travel articles, and book reviews 
to EARTH magazine, and is a digital education leader in 
the two-year college geoscience community.

SmartFigure: Tutorials bring key chapter illustrations to life! Found 
throughout the book, these Tutorials are sophisticated, annotated illustra-
tions that are also narrated videos. They are accessible on mobile devices 
via scannable BouncePages printed in the text and through the Study Area 
in MasteringGeology.
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Concepts in Review, a fresh approach to the typical end-
of-chapter material, provides students with a structured 
and highly visual review of each chapter. Consistent with 
the Focus on Concepts and Concept Checks, the Concepts 
in Review is structured around the section title and the 
corresponding learning objective for each section.

 Concepts in Review 23

8.3 Fossils: Evidence of Past Life
Define fossil and discuss the conditions that favor the preservation of 
organisms as fossils. List and describe various fossil types.

Key TeRms: fossil, paleontology

•	Fossils	are	remains	or	traces	of	
ancient	life.	Paleontology	is	the	
branch	of	science	that	studies	fossils.

•	Fossils	can	form	through	many	
processes.	For	an	organism	to	be	
preserved	as	a	fossil,	it	usually	
needs	to	be	buried	rapidly.	Also,	an	
organism’s	hard	parts	are	most	likely	
to	be	preserved	because	soft	tissue	
decomposes	rapidly	in	most	circumstances.

 What term is used to describe the type of fossil that is shown here? Briefly 
describe how it formed.

8.4 Correlation of Rock Layers
Explain how rocks of similar age that are in different places can be 
matched up.

Key TeRms: correlation, principle of fossil succession, index fossil, fossil 
assemblage

•	Matching	up	exposures	of	rock	that	are	the	same	age	but	are	in	different	
places	is	called	correlation.	By	correlating	rocks	from	around	the	world,	
geologists	developed	the	geologic	time	scale	and	obtained	a	fuller	
perspective	on	Earth	history.

•	Fossils	can	be	used	to	correlate	sedimentary	rocks	in	widely	separated	
places	by	using	the	rocks’	distinctive	fossil	content	and	applying	the	
principle	of	fossil	succession.	The	principle	states	that	fossil	organisms	
succeed	one	another	in	a	definite	and	determinable	order,	and,	
therefore,	a	time	period	can	be	recognized	by	examining	its	fossil	
content.

•	Index	fossils	are	particularly	useful	in	correlation	because	they	are	
widespread	and	associated	with	a	relatively	narrow	time	span.	The	
overlapping	ranges	of	fossils	in	an	assemblage	may	be	used	to	establish	
an	age	for	a	rock	layer	that	contains	multiple	fossils.

•	Fossils	may	be	used	to	establish	ancient	environmental	conditions	that	
existed	when	sediment	was	deposited.

8.5 Determining Numerical Dates with 
Radioactivity
Discuss three types of radioactive decay and explain how radioactive 
isotopes are used to determine numerical dates.

Key TeRms: radioactivity, radioactive decay, radiometric dating, half-life, ra-
diocarbon dating

8.1 A Brief History of Geology
Explain the principle of uniformitarianism and discuss how it differs from 
catastrophism.

Key TeRms: catastrophism, uniformitarianism

•	Early	ideas	about	the	nature	of	Earth	were	based	on	religious	traditions	
and	notions	of	great	catastrophes.

•	In	the	late	1700s,	James	Hutton	emphasized	that	the	same	slow	
processes	have	acted	over	great	spans	of	time	and	are	responsible	
for	Earth’s	rocks,	mountains,	and	landforms.	This	similarity	of	
processes	over	vast	spans	of	time	led	to	this	principle	being	called	
uniformitarianism.

8.2 Creating a Time Scale—Relative 
Dating Principles
Distinguish between numerical and relative dating and apply relative 
dating principles to determine a time sequence of geologic events.

Key TeRms: numerical date, relative date, principle of superposition, principle 
of original horizontality, principle of lateral continuity, principle of cross-cutting 
relationships, inclusion, conformable, unconformity, angular unconformity, 
disconformity, nonconformity

•	The	two	types	of	dates	that	geologists	use	to	interpret	Earth	history	
are	(1)	relative	dates,	which	put	events	in	their	proper	sequence	of	
formation,	and	(2)	numerical	dates,	which	pinpoint	the	time	in	years	
when	an	event	took	place.

•	Relative	dates	can	be	established	using	the	principles	of	superposition,	
original	horizontality,	lateral	continuity,	cross-cutting	relationships,	
and	inclusions.	Unconformities,	gaps	in	the	geologic	record,	may	be	
identified	during	the	relative	dating	process.

CONCEPTS IN REVIEW
Geologic Time

Basalt xenolith

Granite

Joint

Granite
dike

Mike Beauregard

E.J. Tarbuck

 The accompanying photo shows four features. Place the features in the 
proper sequence, from oldest to youngest. Explain your reasoning.
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Give It Some Thought (GIST) is found at the end of each 
chapter and consists of questions and problems asking 
students to analyze, synthesize, and think critically about 
Geology. GIST questions relate back to the chapter’s learning 
objectives, and can easily be assigned using MasteringGeology.

24 Chapter 8 Geologic Time

•	One way geologists assign numerical dates to sedimentary rocks is to use 
relative dating principles to relate them to datable igneous masses, such 
as dikes, lava flows, and volcanic ash beds. A layer may be older than one 
igneous feature and younger than another.

 Determine the age of the sandstone layer in the figure as accurately as 
 possible.

Unconformity

Granite dated at
1.4 billion years old

Basalt dike dated at
570 million years old

Sandstone

 1. The accompanying image shows the metamorphic rock gneiss, a ba-
saltic dike, and a fault. Place these three features in their proper se-
quence (which came first, second, and third) and explain your logic.

 2. A mass of granite is in contact with a layer of sandstone. Using a 
principle described in this chapter, explain how you might determine 
whether the sandstone was deposited on top of the granite or whether 
the magma that formed the granite was intruded after the sandstone 
was deposited.

 3. This scenic image is from Monument Valley in the northeastern corner 
of Arizona. The bedrock in this region consists of layers of sedimentary 
rocks. Although the prominent rock exposures (“monuments”) in this 
photo are widely separated, we can infer that they represent a once-
continuous layer. Discuss the principle that allows us to make this 
inference.

 4. The accompanying photo shows two layers of sedimentary rock. The 
lower layer is shale from the late Mesozoic era. Note the old river 
channel that was carved into the shale after it was deposited. Above is 
a younger layer of boulder-rich breccia. Are these layers conformable? 
Explain why or why not. What term from relative dating applies to the 
line separating the two layers?

 5. Refer to Figure 8.9, which shows the historic angular unconformity at 
Scotland’s Siccar Point that James Hutton studied in the late 1700s. 
Refer to this photo for the following exercises.
a. Describe in general what occurred to produce this feature.
b. Suggest ways in which at least three of Earth’s four spheres could 

have been involved.
c. The Earth system is powered by energy from two sources. How are 

both sources represented in the Siccar Point unconformity?

 6. These polished stones are called gastroliths. Explain how such objects 
can be considered fossils. What category of fossil are they? Name an-
other example of a fossil in this category.

 7. If a radioactive isotope of thorium (atomic number 90, mass number 
232) emits 6 alpha particles and 4 beta particles during the course of 
radioactive decay, what are the atomic number and mass number of 
the stable daughter product?

 8. A hypothetical radioactive isotope has a half-life of 10,000 years. If the 
ratio of radioactive parent to stable daughter product is 1:3, how old is 
the rock that contains the radioactive material?

 9. Solve the problems below that relate to the magnitude of Earth his-
tory. To make calculations easier, round Earth’s age to 5 billion years.
a. What percentage of geologic time is represented by recorded his-

tory? (Assume 5000 years for the length of recorded history.)
b. Humans and their close relatives (hominins) have been around for 

roughly 5 million years. What percentage of geologic time is repre-
sented by the history of this group?

c. The first abundant fossil evidence does not appear until the begin-
ning of the Cambrian period, about 540 million years ago. What per-
centage of geologic time is represented by abundant fossil evidence?

 10. A portion of a popular college text in historical geology includes 10 
chapters (281 pages) in a unit titled “The Story of Earth.” Two chap-
ters (49 pages) are devoted to Precambrian time. By contrast, the last 
two chapters (67 pages) focus on the most recent 23 million years, 
with 25 of those pages devoted to the Holocene Epoch, which began 
10,000 years ago.
a. Compare the percentage of pages devoted to the Precambrian to 

the actual percentage of geologic time that this span represents.
b. How does the number of pages about the Holocene compare to its 

actual percentage of geologic time?
c. Suggest some reasons why the text seems to have such an unequal 

treatment of Earth history.

 11. The accompanying diagram is a cross section of a hypothetical area. 
Place the lettered features in the proper sequence, from oldest to 
youngest. Where in the sequence can you identify an unconformity?

GIVE IT SOME THOUGHT

(8.7 continued)
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The chapter-opening Focus on Concepts lists the learning objectives for each 
chapter. Each section of the chapter is tied to a specific learning objective, 
providing students with a clear learning path to the chapter content.

Each chapter section 
concludes with Concept 
Checks, a feature that 
lists questions tied to 
the section’s learning 
objective, allowing 
students to monitor 
their grasp of significant 
facts and ideas.

  8.2 Creating a Time Scale—Relative Dating Principles 11

Applying Relative Dating Principles
By applying the principles of relative dating to the hypo-
thetical geologic cross section shown in Figure 8.13, the 
rocks and the events in Earth history they represent can 
be placed into their proper sequence. The statements in 
the figure summarize the logic used to interpret the cross 
section. In this example, we establish a relative time scale 
for the rocks and events in the area of the cross section. 
Remember, we do not know how many years of Earth 
history are represented, nor do we know how this area 
compares to any other.

8.2  CONCEPT CHECKS 
1. Distinguish between numerical dates and relative 

dates.
2. Sketch and label five simple diagrams that 

illustrate each of the following: superposition, 
original horizontality, lateral continuity, cross-
cutting relationships, and inclusions.

3. What is the significance of an unconformity?
4. Distinguish among angular unconformity, 

disconformity, and nonconformity.
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away

4. Layers A through F were 
tilted and exposed layers 
were eroded.

5. Next, beds, G, H, 
I, J, and K were 
deposited in that 
order atop the 
erosion surface 
to produce an 
angular 
unconformity.

6. Finally, a period of uplift and erosion. The 
irregular surface and stream valley indicate that 
another gap in the rock record is being created 
by erosion.

D
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B
A

E

Interpretation:

KJ I H G
F

B

A

E

D
C

Angular
unconformity

Angular
unconformity

Sill

Working out the
geologic history of a
hypothetical region

1. Beneath the 
ocean, beds A, B, 
C, and E were 
deposited in that 
order (law of 
superposition). 

2. Uplift and intrusion of a sill 
(layer D). We know that sill D 
is younger than beds C and E 
because of the inclusions in 
the sill of fragments from 
beds C and E.

3. Next is the intrusion of dike F. 
Because the dike cuts through 
layers A through E, it must be 
younger (principle of 
cross-cutting relationships).

SmartFigure 8.13 Applying 
principles of relative dating

Tutorial

Did You Know?
The word fossil comes 
from the Latin fossilium, 
which means “dug 
up from the ground.” 
As originally used by 
medieval writers, a fossil 
was any stone, ore, or 
gem that came from an 
underground source. In 
fact, many early books 
on mineralogy are called 
books of fossils. The 
current meaning of fossil 
came about during the 
1700s.
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8
DECIPHERING E A RT H’S  H ISTORY

U N I T

IV

FOCUS ON CONCEPTS
Each statement represents the primary learning 
objective for the corresponding major heading 
within the chapter. After you complete the chapter, 
you should be able to:

 8.1  Explain the principle of uniformitarianism 
and discuss how it differs from 
catastrophism.

 8.2  Distinguish between numerical and relative 
dating and apply relative dating principles 
to determine a time sequence of geologic 
events.

 8.3  Define fossil and discuss the conditions 
that favor the preservation of organisms 
as fossils. List and describe various fossil 
types.

 8.4  Explain how rocks of similar age that are in 
different places can be matched up.

 8.5  Discuss three types of radioactive decay and 
explain how radioactive isotopes are used to 
determine numerical dates.

 8.6  Distinguish among the four basic time units 
that make up the geologic time scale and 
explain why the time scale is considered to 
be a dynamic tool.

 8.7  Explain how reliable numerical dates are 
determined for layers of sedimentary rock.

This hiker is on the Kaibab Trail in Arizona’s Grand Canyon 
 National Park. Millions of years of Earth history are exposed in 
the canyon’s rock walls. (Photo by Michael Collier)

248
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The new edition is 
designed to support a 
four-part learning path, an 
innovative structure that 
facilitates active learning 
and allows students to 
focus on important ideas 
as they pause to assess 
their progress at frequent 
intervals.

Modular Approach Driven  
by Learning Objectives
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MasteringGeology delivers engaging, dynamic learning 
opportunities—focusing on course objectives responsive to 
each student’s progress—that are proven to help students 
learn geology course material and understand challenging 
concepts.

Before Class
Dynamic Study Modules and eText 2.0 provide students with a preview of what’s to come.

During Class
Engage Students with Learning Catalytics

Dynamic Study Modules 
enable students to study 
effectively on their own in 
an adaptive format. Stu-
dents receive an initial set 
of questions with a unique 
answer format asking them 
to indicate their confidence.

Once completed, Dynamic 
Study Modules include 
explanations using material 
taken directly from the text.

Learning Catalytics,  a “bring 
your own device” student 
engagement, assessment, and 
classroom intelligence system, 
allows students to use their 
smartphone, tablet, or laptop to 
respond to questions in class.

NEW! Interactive eText 2.0 complete with embedded 
media. eText 2.0 is mobile friendly and ADA accessible.

•	 Now available on smartphones and tablets.
•	 Seamlessly integrated videos and other rich media.
•	 Accessible (screen-reader ready).
•	 Configurable reading settings, including resizable 

type and night reading mode.
•	 Instructor and student note-taking, highlighting, 

bookmarking, and search.

Continuous Learning Before, During, and 
After Class with 
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xxx

GeoTutor coaching activities help students master 
important geologic concepts with highly visual, 
kinesthetic activities focused on critical thinking 
and application of core geoscience concepts.

After Class
Easy-to-Assign, Customizeable, and Automatically Graded Assignments

NEW! Project Condor Videos capture stunning footage 
of the Mountain West region with a quadcopter and a 
GoPro camera. A series of videos have been created 
with annotations, sketching, and narration to improve 
the way students learn about faults and folds, streams, 
volcanoes, and so much more. In Mastering, these vid-
eos are accompanied by questions designed to assess 
students on the main takeaways from each video.

NEW! Mobile Field Trips take 
students to classic geologic locations 
as they accompany geologist–pilot–
photographer–author Michael Collier in 
the air and on the ground to see and 
learn about landscapes that relate to 
concepts in the chapter. In Mastering, 
these videos will be accompanied by 
auto-gradable assessments that will 
track what students have learned.
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Encounter Activities provide rich, interactive explora-
tions of geology and earth science concepts using the 
dynamic features of Google Earth™ to visualize and 
explore earth’s physical landscape. Dynamic assess-
ment includes questions related to core concepts. All 
explorations include corresponding Google Earth KMZ 
media files, and questions include hints and specific 
wrong-answer feedback to help coach students toward 
mastery of the concepts while improving students’ 
geospatial skills.

Additional MasteringGeology 
assignments available:

•	 SmartFigures
•	 Interactive Animations
•	 Give It Some Thought Activities
•	 Reading Quizzes
•	 MapMaster Interactive Maps

NEW! GigaPan Activities allow students to 
take advantage of a virtual field experience 
with high-resolution picture technology that 
has been developed by Carnegie Mellon 
University in conjunction with NASA.
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FOCUS ON CONCEPTS
Each statement represents the primary learning 
objective for the corresponding major heading 
within the chapter. After you complete the chapter, 
you should be able to:

	 I.1	 List and describe the sciences that 
collectively make up Earth science. Discuss 
the scales of space and time in Earth 
science.

	 I.2	 Describe the four “spheres” that comprise 
Earth’s natural environment.

	 I.3	 Define system and explain why Earth is 
considered to be a system.

	 I.4	 Summarize some important connections 
between people and the physical 
environment.

	 I.5	 Discuss the nature of scientific inquiry and 
distinguish between a hypothesis and a 
theory.

Earth’s four spheres—the geosphere (solid Earth), atmosphere 
(air), hydrosphere (water), and biosphere (life)—are represented 
in this scene in the Canadian Rockies. (Photo by  John E. 
Marriott/Glow Images)

2
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Introduction  
to Earth Science
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Earth science is the name for all the sciences that col-
lectively seek to understand Earth and its neighbors in 
space. It includes geology, oceanography, meteorology, 
and astronomy. Throughout its long existence, Earth 
has been changing. In fact, it is changing as you read 
this page and will continue to do so into the foreseeable 
future. Sometimes the changes are rapid and violent, as 
when severe storms, landslides, and volcanic eruptions 
occur. Conversely, many changes take place so gradually 
that they go unnoticed during a lifetime. Scales of size 
and space also vary greatly among the phenomena stud-
ied in Earth science.

Earth science is often perceived as science that is 
performed in the out of doors—and rightly so. A great 
deal of an Earth scientist’s study is based on observations 
and experiments conducted in the field. But Earth sci-
ence is also conducted in the laboratory, where, for exam-
ple, the study of various Earth materials provides insights 
into many basic processes, and the creation of complex 
computer models allows for the simulation of our planet’s 
complicated climate system. Frequently, Earth scientists 
require an understanding and application of knowledge 
and principles from physics, chemistry, and biology. Geol-
ogy, oceanography, meteorology, and astronomy are sci-
ences that seek to expand our knowledge of the natural 
world and our place in it.

Geology
In this text, Units 1–4 focus on the science of geology, 
a word that literally means “study of Earth.” Geology is 
traditionally divided into two broad areas: physical and 
historical.

Physical geology examines the materials compos-
ing Earth and seeks to understand the many processes 

The spectacular eruption of a volcano, the magnificent scenery of a rocky coast, and the 

destruction created by a hurricane are all subjects for the Earth scientist. The study of Earth 

science deals with many fascinating and practical questions about our environment. What forces 

produce mountains? Why is our daily weather so variable? Is climate really changing? How old is 

Earth, and how is it related to the other planets in the solar system? What causes ocean tides? What 

was the Ice Age like? Will there be another? Can a successful well be located at a particular site?

The subject of this text is Earth science. To understand Earth is not an easy task because our 

planet is not a static and unchanging mass. Rather, it is a dynamic body with many interacting parts 

and a long and complex history.

I.1
	
What Is Earth Science? 

	� List and describe the sciences that collectively make up Earth science. Discuss the 
scales of space and time in Earth science.

4

that operate beneath and upon its surface. Earth is a 
dynamic, ever-changing planet. Internal processes cre-
ate earthquakes, build mountains, and produce volcanic 
structures (Figure I.1). At the surface, external processes 
break rock apart and sculpt a broad array of landforms. 
The erosional effects of water, wind, and ice result in a 
great diversity of landscapes. Because rocks and minerals 
form in response to Earth’s internal and external pro-
cesses, their interpretation is basic to an understanding of 
our planet.

In contrast to physical geology, the aim of histori-
cal geology is to understand the origin of Earth and 
the development of the planet through its 4.6-billion-
year history (Figure I.2). It strives to establish an orderly 
chronological arrangement of the multitude of physical 
and biological changes that have occurred in the geologic 
past. The study of physical geology logically precedes the 
study of Earth history because we must first understand 
how Earth works before we attempt to unravel its past.

Oceanography
Earth is often called the “water planet” or the “blue 
planet.” Such terms relate to the fact that more than 
70 percent of Earth’s surface is covered by the global 
ocean. If we are to understand Earth, we must learn 
about its oceans. Unit 5, The Global Ocean, is devoted to 
oceanography.

Oceanography is actually not a separate and distinct 
science. Rather, it involves the application of all sciences in 
a comprehensive and interrelated study of the oceans in all 
their aspects and relationships. Oceanography integrates 
chemistry, physics, geology, and biology. It includes the study 
of the composition and movements of seawater, as well as 
coastal processes, seafloor topography, and marine life.
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Meteorology
The continents and oceans are surrounded by an atmo-
sphere. Unit 6, Earth’s Dynamic Atmosphere, examines 
the mixture of gases that is held to the planet by gravity 
and thins rapidly with altitude. Acted on by the com-
bined effects of Earth’s motions and energy from the 
Sun, and influenced by Earth’s land and sea surface, 
the formless and invisible atmosphere reacts by produc-
ing an infinite variety of weather, which in turn creates 
the basic pattern of global climates. Meteorology is the 
study of the atmosphere and the processes that produce 
weather and climate. Like oceanography, meteorology 
involves the application of other sciences in an integrated 
study of the thin layer of air that surrounds Earth.

Astronomy
Unit 7, Earth’s Place in the Universe, demonstrates that 
an  understanding of Earth requires that we relate our 
planet to the larger universe. Because Earth is related 
to all the other objects in space, the science of astron-
omy—the study of the universe—is very useful in prob-
ing the origins of our own environment. Because we are 
so closely acquainted with the planet on which we live, 
it is easy to forget that Earth is just a tiny object in a vast 
universe. Indeed, Earth is subject to the same physical 
laws that govern the many other objects populating the 
great expanses of space. Thus, to understand explana-
tions of our planet’s origin, it is useful to learn something 

Figure I.1   Volcanic 
eruption  Molten lava from 
Hawaii’s Kilauea volcano 
is spilling into the Pacific 
Ocean. Internal processes 
are those that occur 
beneath Earth’s surface. 
Sometimes they lead to 
the formation of major 
features at the surface. 
(Photo by Stuart Westmoreland/

Cultura/ Getty Images)

Mobile  
Field Trip

SmartFigure I.2  Arizona’s 
Grand Canyon  The 
erosional work of the 
Colorado River along with 
other external processes 
created this natural 
wonder. For someone 
studying historical geology, 
hiking down the South 
Kaibab Trail in Grand 
Canyon National Park is a 
trip through time. These 
rock layers hold clues to 
millions of years of Earth 
history. (Photo by Michael 

Collier) (http://goo.gl/7KwQLk)
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about the other members of our solar system. Moreover, 
it is helpful to view the solar system as a part of the great 
assemblage of stars that comprise our galaxy, which is but 
one of many galaxies.

Scales of Space and Time in Earth 
Science
When we study Earth, we must contend with a broad 
array of space and time scales (Figure I.3). Some phenom-
ena are relatively easy for us to imagine, such as the size 
and duration of an afternoon thunderstorm or the dimen-
sions of a sand dune. Other phenomena are so vast or 
so small that they are difficult to imagine. The number 
of stars and distances in our galaxy (and beyond!) or the 
internal arrangement of atoms in a mineral crystal are 
examples of such phenomena.

Some of the events we study occur in fractions of 
a second. Lightning is an example. Other processes ex-
tend over spans of tens or hundreds of millions of years. 

The lofty Himalaya Mountains began forming about 
45 million years ago, and they continue to develop today.

The concept of geologic time, the span of time 
since the formation of Earth, is new to many nonscien-
tists. People are accustomed to dealing with increments 
of time that are measured in hours, days, weeks, and 
years. Our history books often examine events over spans 
of centuries, but even a century is difficult to appreci-
ate fully. For most of us, someone or something that is 
90 years old is very old, and a 1000-year-old artifact is 
ancient.

By contrast, those who study Earth science must 
routinely deal with vast time periods—millions or bil-
lions (thousands of millions) of years. When viewed in the 
context of Earth’s nearly 4.6-billion-year history, an event 
that occurred 100 million years ago may be character-
ized as “recent” by a geologist, and a rock sample that has 
been dated at 10 million years may be called “young.”

An appreciation for the magnitude of geologic time is 
important in the study of our planet because many pro-
cesses are so gradual that vast spans of time are needed 

Atom

Mineral

Rock

Mountain

Planet

Solar system

Galaxy

Earth science involves investigations of phenomena that 
range in size from the atomic level to those that involve 
large portions of the universe.

Figure I.3  From atoms to 
galaxies  Earth science 
involves investigations of 
phenomena that range in 
size from atoms to galax-
ies and beyond.

Did You Know?
The circumference of 
Earth is slightly more 
than 40,000 km (nearly 
25,000 mi). It would take 
a jet plane traveling at 
1000 km/hr (620 mi/hr) 40 
hours (1.7 days) to circle 
the planet.
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before significant changes occur. How long is 4.6 billion 
years? If you were to begin counting at the rate of one 
number per second and continued 24 hours a day, 7 days 
a week and never stopped, it would take about two life-
times (150 years) to reach 4.6 billion!

The previous is just one of many analogies that have 
been conceived in an attempt to convey the magnitude 
of geologic time. Although helpful, all of them, no matter 
how clever, only begin to help us comprehend the vast 
expanse of Earth history. Figure I.4 provides another inter-
esting way of viewing the age of Earth.

Over the past 200 years or so, Earth scientists 
have developed a geologic time scale of Earth history. 
It subdivides the 4.6-billion-year history of Earth 
into many different units and provides a meaningful 
time frame within which the events of the geologic 

past are arranged (see Figure 8.23, page 266). The 
geologic time scale and the principles used to develop 
it are examined in Chapter 8.

I.1 	CONCEPT CHECKS 
1.	List and briefly describe the sciences that 

collectively make up Earth science.
2.	Name the two broad subdivisions of geology and 

distinguish between them.
3.	List two examples of size/space scales in Earth 

science that are at opposite ends of the spectrum.
4.	How old is Earth?
5.	If you compress geologic time into a single year, 

how much time has elapsed since Columbus 
arrived in the New World?

What if we compress the 4.6 billion years of
Earth history into a single year?

1. January 1
Origin of

Earth

2. February 12
Oldest known

rocks

3. Late March:
Earliest evidence for life

(bacteria)

5. Late
November:
Plants and

animals move to
the land

4. Mid-November:
Beginning of the
Phanerozoic eon.

Animals having hard
parts become abundant

6. December 15 to 26
Dinosaurs dominate

8. Dec. 31
(11:49)
Humans

(Homo sapiens)
appear

7. December 31
the last day of the year

(all times are P.M.)9. Dec. 31
(11:58:45)

Ice Age glaciers
recede from the

Great Lakes

10. Dec. 31
(11:59:45 to 11:59:50)

Rome rules the
Western world 

11. Dec. 31
(11:59:57)

Columbus arrives
in the New World

12. Dec. 31
(11:59:59.999)

Turn of the
millennium
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SmartFigure I.4   
Magnitude of geologic time 
(https://goo.gl/odwyUE)
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Did You Know?

The Sun contains 99.86 
percent of the mass of 
the solar system, and 
its circumference is 109 
times that of Earth. A jet 
plane traveling at 1000 
km/hr (620 mi/hr) would 
require nearly 182 days to 
circle the Sun.
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8 Introduction	 Introduction to Earth Science

The images in Figure I.5 are considered classics because 
they let humanity see Earth differently than ever before. 
These early views profoundly altered our conceptual-
izations of Earth and remain powerful images decades 
after they were first viewed. Such images remind us that 
our home is, after all, a planet—small, self-contained, 
and in some ways even fragile. Bill Anders, the Apollo 8 

astronaut who took the “Earthrise” photo, expressed it 
this way: “We came all this way to explore the Moon, 
and the most important thing is that we discovered the 
Earth.”

As we look closely at our planet from space, it be-
comes clear that Earth is much more than rock and soil. 
In fact, the most conspicuous features in Figure I.5A are 
not continents but swirling clouds suspended above the 
surface and the vast global ocean. These features empha-
size the importance of air and water to our planet.

The closer view of Earth from space shown in 
Figure I.5B helps us appreciate why traditionally the 
physical environment is divided into three major parts: 
the water portion of our planet, called the hydrosphere; 
Earth’s gaseous envelope, called the atmosphere; and, of 
course, the solid Earth, or geosphere.

It should be emphasized that our environment is 
highly integrated and not dominated by water, air, or rock 
alone. Rather, it is characterized by continuous interac-
tions as air comes in contact with rock, rock with water, 
and water with air. Moreover, the biosphere, the total-
ity of life-forms on our planet, extends into each of the 
three physical realms and is an equally integral part of 
the planet. Thus, Earth can be thought of as consisting 
of four major spheres: the hydrosphere, atmosphere, geo-
sphere, and biosphere.

The interactions among Earth’s four spheres are in-
calculably complex. Figure I.6 provides an easy-to-visualize 
example. The shoreline is an obvious meeting place for 
rock, water, and air. In this scene, ocean waves that were 
created by the drag of air moving across the water are 
breaking against the rocky shore. The force of the water 
can be powerful, and the erosional work that is accom-
plished can be great.

Hydrosphere
Earth is sometimes called the blue planet. Water, more 
than anything else, makes Earth unique. The hydro-
sphere is a dynamic mass of water that is continually 
moving, evaporating from the oceans to the atmosphere, 
precipitating to the land, and flowing back to the ocean. 
The global ocean is certainly the most prominent fea-
ture of the hydrosphere, blanketing nearly 71 percent of 
Earth’s surface to an average depth of about 3800 meters 
(12,500 feet). It accounts for more than 96 percent of 
Earth’s water (Figure I.7). The hydrosphere also includes 
the freshwater found underground and in streams, lakes, 
and glaciers. Moreover, water is an important component 
of all living things.

Although freshwater accounts for just a tiny fraction 
of the total, its importance goes beyond supporting life 

I.2
	
Earth’s Spheres 

	� Describe the four “spheres” that comprise Earth’s natural environment.

B.

A.

View called “Earthrise” that greeted
Apollo 8 astronauts as their spacecraft
emerged from behind the Moon in
December 1968. This classic image
let people see Earth differently than
ever before.

View called “Earthrise” that greeted
Apollo 8 astronauts as their spacecraft
emerged from behind the Moon in
December 1968. This classic image
let people see Earth differently than
ever before.

This image taken from Apollo 17 in
December 1972 is perhaps the first to be
called “The Blue Marble.” The dark blue
ocean and swirling cloud patterns remind 
us of the importance of the oceans and
atmosphere.

Figure I.5  Two classic 
views of Earth from space 
(Johnson Space Center/NASA)

Did You Know?
The volume of ocean 
water is so large that if 
Earth’s solid mass were 
perfectly smooth (level) 
and spherical, the oceans 
would cover Earth’s en-
tire surface to a uniform 
depth of more than 2000 
m (1.2 mi)!
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on land. Streams, 
glaciers, and ground-
water are responsible 
for sculpturing and 
creating many of 
our planet’s varied 
landforms. Water in 
the atmosphere, in 
the form of clouds 
and water vapor, 
plays a critical role in 
weather and climate 
processes.

Atmosphere
Earth is surrounded 
by a life-giving gas-
eous envelope called 
the atmosphere 
(Figure I.8). When we 
watch a high-flying 
jet plane cross the 
sky, it seems that the atmosphere extends upward for a 
great distance. However, when compared to the thick-
ness (radius) of the solid Earth (about 6400 kilometers 
[4000 miles]), the atmosphere is a very shallow layer. 
Despite its modest dimensions, this thin blanket of 
air is nevertheless an integral part of the planet. It not 

only provides the air we breathe but also acts to protect 
us from the dangerous radiation emitted by the Sun. 
The energy exchanges that continually occur between 
the atmosphere and Earth’s surface, as well as between 
the atmosphere and space, produce the effects we call 
weather and climate. Climate has a strong influence on 

Figure I.6  Interactions 
among Earth’s spheres   
The shoreline is one obvi-
ous interface—a common 
boundary where different 
parts of a system interact. 
In this scene, ocean waves 
(hydrosphere) that were 
created by the force of 
moving air (atmosphere) 
break against a rocky 
shore (geosphere). The 
force of the water can be 
powerful, and the ero-
sional work that is accom-
plished can be great. (Photo 

by Michael Collier)

Figure I.7  The water 
planet  Distribution of 
water in the hydrosphere.
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Hydrosphere

Streams, lakes, soil
moisture, atmosphere,
etc. account for 0.03%

(3/100 of 1%)

Although fresh groundwater
represents less  than 1%
of the  hydrosphere, it 

accounts for 30%  of all
freshwater  and about 96% 

of all liquid freshwater.

Nearly 69% of Earth's
freshwater is locked

up in glaciers.

Oceans
96.5%

Saline
groundwater
and lakes

0.9%

Groundwater
0.75%

Glaciers
1.72%

Glaciers and
ice sheets

Bernhard Edmaier/ Science Source Michael CollierMichael Collier

Groundwater
(spring)

Stream

All other
freshwater

0.03%

Freshwater
2.5%

  
Did You Know?

Since the mid-1970s, the 
global average surface 
temperature has in-
creased by about 0.6°C 
(1°F). By the end of the 
twenty-first century, the 
global average sur-
face temperature may 
increase by an additional 
2° to 4.5°C (3.5° to 8.1°F).
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